88 年度下半年暨 89 年度國家標準實驗室計畫執行成果摘要表論文

		1					
計畫名稱	中文 建立及維持我國時間與頻率國家標準						
計畫編號	The Maintenance and New Technology Establishment of National Standard for Time and Frequency						
計畫編號	TL-001-P301(89)						
執行單位	中華電信研究所			執行期間	88年7月至89年12月		
主持人	廖嘉旭			協同主持人			
分項主持人				連絡電話		(03)424-4441	
成果名稱	中文	中文 GPS/GLONASS 載波相位頻率同步					
	英文 Clock Synchronization Using GPS/GLONASS Carrier Phase						
撰寫人	涂昆源		彭	彭新民		廖嘉旭	
撰寫日期	中華民國89年10月1日			撰寫語言及頁		英文 6 頁	
解密期限	4	甲華 民 國 年 月	目底解密	機密級			
關鍵詞							
	GPS carrier phase, GLONASS carrier phase, Frequency stability, Frequency accuracy						
	1 / 1 5 5/ 1 15 5/ 1						
内容協画・							

l內容摘要:

The clock synchronization by using GPS/GLONASS carrier phase measurements is proposed in this paper. The GPS/GLONASS receivers with the external frequency input interface are used in our system. While the remote OCXO (Oven-Controlled Crystal Oscillator) clock and the primary H-maser clock are connected to the receivers, the frequency offset of the remote clock with respect to the primary clock can be estimated by performing the linear-least-square fit on carrier-phase single-difference observables. The proportional controller is adopted in our system for tuning the remote clock in real time. Through the D/A converter, the remote clock is then steered to synchronize with the primary clock. For averaging times of one day under the configuration of about a 30-meter baseline, our experimental results show that the accuracy of the remote clock can be improved from about 2?10^{?10} to about a few parts in 10¹⁴. Based on the proposed architecture, the frequency traceability can be achieved. The potential applications include the frequency sources system for calibration laboratories, telecommunication networks and power transmission system.