88 年度國家標準實驗室計畫執行成果摘要表論文

計畫名稱	中文	了。 建立及維持我國時間與頻率國家標準					
計畫編號	英文	The Maintenance and New Technology Establishment of National Standard for Time and Frequency					
計畫編號	TL-001-P201(88)						
執行單位	中華電信研究所			執行期間	87年7月至88年6月		
主持人	廖嘉旭			協同主持人			
分項主持人	張清。			連絡電話	(03)4244441		
成 果名 稱	中文 使用灰動態模型的時鐘預測						
	Prediction of Clocks Using Gray Dynamic Model 英文						
撰寫人	張清濠		廖嘉旭		施江霖		
撰寫日期	中華民國88年3月日			撰寫語言及頁數 英文 8 頁			
解密期限	中 華 民 國 年 月底解密 機密級						
	Gray dynamic model, GM(1,1), Frequency offset						
關鍵詞							
12L1 3V = H. 1							
ĺ							

內容摘要: A method of clock prediction using the theory of gray dynamic model is discussed in this paper. The gray dynamic model has been proven useful in predicting the response of a system with energy. Advantage of using the model is that it is capable of predicting future data simply based on a set of data samples. Two examples are conducted in this paper. First, a set of phase errors recorded in our laboratory is used to test the effectiveness of the model. In this example, the maximum error resulted is about 50 % lower than that resulted from the use of least squares fit. Second, a set of noise corrupted data is used to estimate the frequency offset of a clock and, then, to steer the clock based on that estimate.